Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Biochemistry (Mosc) ; 89(1): 184-195, 2024 Jan.
Article En | MEDLINE | ID: mdl-38467554

Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.


Focal Adhesions , Intermediate Filaments , Rats , Animals , Intermediate Filaments/metabolism , Focal Adhesions/metabolism , Vimentin/genetics , Vimentin/metabolism , Vimentin/pharmacology , Microtubules/metabolism , Cell Movement , Cell Surface Extensions/metabolism
2.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Article En | MEDLINE | ID: mdl-37570494

In this study, we proposed photocatalysts based on graphite-like carbon nitride with a low content (0.01-0.5 wt.%) of noble metals (Pd, Rh) for hydrogen evolution under visible light irradiation. As precursors of rhodium and palladium, labile aqua and nitrato complexes [Rh2(H2O)8(µ-OH)2](NO3)4∙4H2O and (Et4N)2[Pd(NO3)4], respectively, were proposed. To obtain metallic particles, reduction was carried out in H2 at 400 °C. The synthesized photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy and high-resolution transmission electron microscopy. The activity of the photocatalysts was tested in the hydrogen evolution from aqueous and aqueous alkaline solutions of TEOA under visible light with a wavelength of 428 nm. It was shown that the activity for the 0.01-0.5% Rh/g-C3N4 series is higher than in the case of the 0.01-0.5% Pd/g-C3N4 photocatalysts. The 0.5% Rh/g-C3N4 sample showed the highest activity per gram of catalyst, equal to 3.9 mmol gcat-1 h-1, whereas the most efficient use of the metal particles was found over the 0.1% Rh/g-C3N4 photocatalyst, with the activity of 2.4 mol per gram of Rh per hour. The data obtained are of interest and can serve for further research in the field of photocatalytic hydrogen evolution using noble metals as cocatalysts.

3.
Inorg Chem ; 62(32): 12625-12629, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37523240

In order to prepare the first lanthanide coordination polymers (CPs) based on ditopic sulfide ligands, benzo[1,2-d:4,5-d']bisthiazole-2,6(3H,7H)-dithione (H2L) was used as a linker. The reactions of lanthanide silylamides Ln[N(SiMe3)2]3 (Ln = Nd, Gd, Er, and Yb) with H2L result in the formation of soluble dimethyl sulfoxide (DMSO) ionic salts [Ln(DMSO)8][L]1.5 [Ln = Nd (1), Gd (2), Er (3), and Yb (4)]. Due to the lack of coordination of anionic ligands, compounds 1, 3, and 4 do not show sensitized metal-centered photoluminescence (PL), while Gd compound 2 shows weak phosphorescence at 77 K. It was found that the heating of 1 in a 1:9 DMSO/1,4-dioxane mixture leads to the formation of large crystals of 2D CP [Nd(DMSO)3L1.5·0.5diox]n (5), where deprotonated dithione H2L plays the role of a ditopic linker. This linker acts as an "antenna" in compound 5, providing an intense near-infrared (NIR) PL of Nd3+ ion upon near-UV and blue-light excitation. The application of a synthetic protocol similar to that of compounds 2-4 led to the formation of amorphous compounds [Ln(DMSO)3L1.5·0.5diox]n [Ln = Gd (6), Er (7), and Yb (8)], whose PL properties significantly differ from those of the parental ionic salts. In the case of Yb polymer 8, the PL excitation spectra are shifted to the red region due to a low-energy ligand-to-metal charge-transfer state. The synthesized compounds 5-8 are the first examples of lanthanide CPs using soft-base ditopic linkers in their structures.

4.
Materials (Basel) ; 15(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36431512

In this work, new photocatalysts based on Cd1-xMnxS sulfide solid solutions were synthesized by varying the fraction of MnS (x = 0.4, 0.6, and 0.8) and the hydrothermal treatment temperature (T = 100, 120, 140, and 160 °C). The active samples were modified with Pt and NiS co-catalysts. Characterization was performed using various methods, including XRD, XPS, HR TEM, and UV-vis spectroscopy. The photocatalytic activity was tested in hydrogen evolution from aqueous solutions of Na2S/Na2SO3 and glucose under visible light (425 nm). When studying the process of hydrogen evolution using an equimolar mixture of Na2S/Na2SO3 as a sacrificial agent, the photocatalysts Cd0.5Mn0.5S/Mn(OH)2 (T = 120 °C) and Cd0.4Mn0.6S (T = 160 °C) demonstrated the highest activity among the non-modified solid solutions. The deposition of NiS co-catalyst led to a significant increase in activity. The best activity in the case of the modified samples was shown by 0.5 wt.% NiS/Cd0.5Mn0.5S (T = 120 °C) at the extraordinary level of 34.2 mmol g-1 h-1 (AQE 14.4%) for the Na2S/Na2SO3 solution and 4.6 mmol g-1 h-1 (AQE 2.9%) for the glucose solution. The nickel-containing samples possessed a high stability in solutions of both sodium sulfide/sulfite and glucose. Thus, nickel sulfide is considered an alternative to depositing precious metals, which is attractive from an economic point of view. It worth noting that the process of photocatalytic hydrogen evolution from sugar solutions by adding samples based on Cd1-xMnxS has not been studied before.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Article En | MEDLINE | ID: mdl-36144894

In this study, we have proposed titania-based photocatalysts modified with copper compounds for hydrogen evolution. Thermal pre-treatment of commercial TiO2 Degussa P25 (DTiO2) and Hombifine N (HTiO2) in the range from 600 to 800 °C was carried out followed by the deposition of copper oxides (1-10 wt. % of Cu). The morphology and chemical state of synthesized photocatalysts were studied using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and XANES/EXAFS X-ray absorption spectroscopy. Photocatalytic activity was tested in the hydrogen evolution from aqueous solutions of glycerol under ultraviolet (λ = 381 nm) and visible (λ = 427 nm) light. The photocatalysts 2% CuOx/DTiO2 T750 and 5% CuOx/DTiO2 T700 showed the highest activity under UV irradiation (λ = 380 nm), with the rate of H2 evolution at the level of 2.5 mmol (H2) g-1 h-1. Under the visible light irradiation (λ = 427 nm), the highest activity of 0.6 mmol (H2) g-1 h-1 was achieved with the 5% CuOx/DTiO2 T700 photocatalyst. The activity of these photocatalysts is 50% higher than that of the platinized 1% Pt/DTiO2 sample. Thus, it was shown for the first time that a simple heat treatment of a commercial titanium dioxide in combination with a deposition of non-noble metal particles led to a significant increase in the activity of photocatalysts and made it possible to obtain materials that were active in hydrogen production under visible light irradiation.

6.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article En | MEDLINE | ID: mdl-35564293

In this study, TiO2-based photocatalysts modified with Pt and Cu/CuOx were synthesized and studied in the photocatalytic reduction of CO2. The morphology and chemical states of synthesized photocatalysts were studied using UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. A series of light-emitting diodes (LEDs) with maximum intensity in the range of 365-450 nm was used to determine the action spectrum of photocatalysts. It is shown for, the first time, that the pre-calcination of TiO2 at 700 °C and the use of Cu/CuOx instead of Pt allow one to design a highly efficient photocatalyst for CO2 transformation shifting the working range to the visible light (425 nm). Cu/CuOx/TiO2 (calcined at 700 °C) shows a rate of CH4 formation of 1.2 ± 0.1 µmol h-1 g-1 and an overall CO2 reduction rate of 11 ± 1 µmol h-1 g-1 (at 425 nm).

7.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article En | MEDLINE | ID: mdl-36613789

Currently, the synthesis of active photocatalysts for the evolution of hydrogen, including photocatalysts based on graphite-like carbon nitride, is an acute issue. In this review, a comprehensive analysis of the state-of-the-art studies of graphic carbon nitride as a photocatalyst for hydrogen production under visible light is presented. In this review, various approaches to the synthesis of photocatalysts based on g-C3N4 reported in the literature were considered, including various methods for modifying and improving the structural and photocatalytic properties of this material. A thorough analysis of the literature has shown that the most commonly used methods for improving g-C3N4 properties are alterations of textural characteristics by introducing templates, pore formers or pre-treatment method, doping with heteroatoms, modification with metals, and the creation of composite photocatalysts. Next, the authors considered their own detailed study on the synthesis of graphitic carbon nitride with different pre-treatments and respective photocatalysts that demonstrate high efficiency and stability in photocatalytic production of hydrogen. Particular attention was paid to describing the effect of the state of the platinum cocatalyst on the activity of the resulting photocatalyst. The decisive factors leading to the creation of active materials were discussed.


Light , Nitriles , Nitriles/chemistry , Hydrogen/chemistry
8.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Article En | MEDLINE | ID: mdl-33535500

A series of solid solutions of cadmium and manganese sulfides, Cd1-xMnxS (x = 0-0.35), and composite photocatalysts, CdS-ß-Mn3O4-MnOOH, were synthesized by precipitation with sodium sulfide from soluble cadmium and manganese salts with further hydrothermal treatment at 120 °C. The obtained photocatalysts were studied by the X-ray diffraction method (XRD), UV-vis diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 low temperature adsorption. The photocatalysts were tested in hydrogen production using a Na2S/Na2SO3 aqueous solution under visible light (λ = 450 nm). It was shown for the first time that both kinds of photocatalysts possess high activity in hydrogen evolution under visible light. The solid solution Cd0.65Mn0.35S has an enhanced photocatalytic activity due to its valence and conduction band position tuning, whereas the CdS-ß-Mn3O4-MnOOH (40-60 at% Mn) samples were active due to ternary heterojunction formation. Further, the composite CdS-ß-Mn3O4-MnOOH photocatalyst had much higher stability in comparison to the Cd0.65Mn0.35S solid solution. The highest activity was 600 mmol g-1 h-1, and apparent quantum efficiency of 2.9% (λ = 450 nm) was possessed by the sample of CdS-ß-Mn3O4-MnOOH (40 at% Mn).

9.
RSC Adv ; 11(60): 37966-37980, 2021 Nov 23.
Article En | MEDLINE | ID: mdl-35498100

Ternary composite photocatalysts based on titania and solid solutions of CdS and ZnS were prepared and studied by a set of physicochemical methods including XRD, XPS, HRTEM, UV-vis spectroscopy, and electrochemical tests. Two synthetic techniques of platinization of Cd1-x Zn x S/TiO2 were compared. In the first case, platinum was deposited on the surface of synthesized Cd1-x Zn x S (x = 0.2-0.3)/TiO2 P25; in the second one, Cd1-x Zn x S (x = 0.2-0.3) was deposited on the surface of Pt/TiO2 P25. The photocatalytic properties of the obtained samples were compared in the hydrogen evolution from TEOA aqueous solution under visible light (λ = 425 nm). The Cd1-x Zn x S (10-50 wt%; x = 0.2-0.3)/Pt (1 wt%)/TiO2 photocatalysts demonstrated much higher photocatalytic activity than the Pt (1 wt%)/Cd1-x Zn x S (10-50 wt%; x = 0.2-0.3)/TiO2 ones. It turned out that the arrangement of platinum nanoparticles precisely on the titanium dioxide surface in a composite photocatalyst makes it possible to achieve efficient charge separation according to the type II heterojunctions and, accordingly, a high rate of hydrogen formation. The highest photocatalytic activity was demonstrated by 20% Cd0.8Zn0.2S/1% Pt/TiO2 in the amount of 26 mmol g-1 h-1 (apparent quantum efficiency was 7.7%) that exceeds recently published values for this class of photocatalysts.

10.
Chemistry ; 26(57): 13085-13092, 2020 Oct 09.
Article En | MEDLINE | ID: mdl-32640117

A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron-hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications.

11.
Dalton Trans ; 49(9): 2941-2946, 2020 Mar 03.
Article En | MEDLINE | ID: mdl-32073071

The reduction of [(dpp-bian)BBr] (1, dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with dilithium naphthalenide in Et2O gives [{(dpp-bian)BBr}Li2(Et2O)2]2 (3). The treatment of [(dpp-bian)BONa] (5) and [(dpp-bian)Ge:] (7) with sodium is accompanied by protonation of the acenaphthylene fragment and affords [{(H-dpp-bian)BONa(dme)2}Na(dme)3] (6) and [(H-dpp-bian)Ge:][Na(dme)3] (8), respectively. Compounds 3, 6 and 8 have been characterized by 1H NMR and IR spectroscopy. The molecular structures of 3, [(dpp-bian)BOK] (4) and 8 have been established by single crystal X-ray analysis.

12.
RSC Adv ; 10(3): 1341-1350, 2020 Jan 07.
Article En | MEDLINE | ID: mdl-35494672

Photocatalysts based on zinc hydroxide and a solid solution of CdS and ZnS were prepared via the precipitation method and used for photocatalytic hydrogen production from aqueous solutions of inorganic (Na2S/Na2SO3) and organic (ethanol) sacrificial agents. The photocatalysts were tested in cyclic experiments for hydrogen evolution and studied using X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. Different transformations of the ß-Zn(OH)2 co-catalyst were observed in the presence of inorganic and organic sacrificial agents; namely, ZnS was formed in Na2S/Na2SO3 solution, whereas the formation of ε-Zn(OH)2 was detected in solution with ethanol. The composite Zn(OH)2/Cd1-x Zn x S photocatalysts have great potential in various photocatalysis processes (e.g., hydrogen production, CO2 reduction, and the oxidation of organic contaminants) under visible light.

13.
RSC Adv ; 10(56): 34137-34148, 2020 Sep 10.
Article En | MEDLINE | ID: mdl-35519069

A series of CuO x -TiO2 photocatalysts were prepared using fresh and thermally activated Evonik Aeroxide P25 titanium dioxide. The photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, XANES, diffuse reflectance spectroscopy, and N2 adsorption technique. Photocatalytic activity of the samples was tested in hydrogen production from aqueous-alcoholic solutions of methylene blue under UV radiation (λ = 386 nm). It was found for the first time the synergistic effect of hydrogen production from two substrates-dye and ethanol. The maximum hydrogen production rate in the system water-ethanol-methylene blue was 1 µmol min-1, which is 25 times higher than a value measured in a 10% solution of ethanol in water. The thermal activation of titania also leads to a change in the rate of hydrogen production. The highest catalytic activity was observed for a CuO x -TiO2 photocatalyst based on titania thermally-activated at 600 °C in air. A mechanism of the photocatalytic reaction is discussed.

14.
Photochem Photobiol Sci ; 18(4): 871-877, 2019 Apr 10.
Article En | MEDLINE | ID: mdl-30387484

Novel photocatalysts for CO2 reduction, which consist of a cadmium and zinc sulfide solid solution (Cd1-xZnxS), were successfully prepared by a simple two-step technique. The photocatalysts were characterized by X-ray diffraction, UV-VIS diffuse reflectance spectroscopy, and low-temperature N2 adsorption techniques and were tested in the gas-phase photocatalytic reduction of CO2 under visible light (λ = 450 nm). All the synthesized Cd1-xZnxS solid solutions were capable of enabling the chemical transformations of CO2 under the conditions considered. Carbon monoxide was the major product during the CO2 reduction over Cd1-xZnxS (x = 0-0.87). Methane and hydrogen were also detected in the gas phase in low amounts. The activity of the prepared samples and the distribution of the reduction products strongly depended on the actual cadmium to zinc ratio. The Cd0.94Zn0.06S photocatalyst showed the highest activity, 2.9 µmol CO per gram per hour, and selectivity, 95%, during CO2 reduction under visible light in the presence of water vapor. The achieved values are very high for the sulfide-based photocatalysts.

15.
ChemSusChem ; 8(1): 148-57, 2015 Jan.
Article En | MEDLINE | ID: mdl-25359712

Two new hybrid molybdenum(IV) Mo3 S7 cluster complexes derivatized with diimino ligands have been prepared by replacement of the two bromine atoms of [Mo3 S7 Br6 ](2-) by a substituted bipyridine ligand to afford heteroleptic molybdenum(IV) Mo3 S7 Br4 (diimino) complexes. Adsorption of the Mo3 S7 cores from sample solutions on TiO2 was only achieved from the diimino functionalized clusters. The adsorbed Mo3 S7 units were reduced on the TiO2 surface to generate an electrocatalyst that reduces the overpotential for the H2 evolution reaction by approximately 0.3 V (for 1 mA cm(-2) ) with a turnover frequency as high as 1.4 s(-1) . The nature of the actual active molybdenum sulfide species has been investigated by X-ray photoelectron spectroscopy. In agreement with the electrochemical results, the modified TiO2 nanoparticles show a high photocatalytic activity for H2 production in the presence of Na2 S/Na2 SO3 as a sacrificial electron donor system.


Disulfides/chemistry , Hydrogen/chemistry , Molybdenum/chemistry , Photochemical Processes , Titanium/chemistry , Water/chemistry , Electrochemistry , Models, Molecular , Molecular Conformation
...